p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.121D4, C4.32+ 1+4, C8⋊8D4⋊1C2, C22⋊D8⋊5C2, D4⋊D4⋊1C2, C8⋊7D4⋊17C2, (C2×D8)⋊3C22, C2.D8⋊4C22, C4.Q8⋊32C22, C22⋊SD16⋊29C2, C4⋊D4⋊57C22, C4⋊C4.127C23, C22⋊C8⋊60C22, (C2×C4).386C24, (C2×C8).320C23, (C22×C8)⋊16C22, Q8⋊C4⋊1C22, C23.271(C2×D4), (C22×C4).484D4, C22⋊Q8⋊69C22, D4⋊C4⋊43C22, C22.19C24⋊9C2, (C2×SD16)⋊39C22, (C2×D4).139C23, C22.31(C4○D8), C23.48D4⋊4C2, C23.19D4⋊1C2, C22.2(C8⋊C22), (C2×Q8).126C23, C42⋊C2⋊16C22, C23.46D4⋊29C2, C2.67(C23⋊3D4), (C23×C4).566C22, C22.646(C22×D4), (C22×C4).1064C23, (C22×D4).381C22, C2.38(C2×C4○D8), (C2×C4⋊D4)⋊50C2, (C2×C22⋊C8)⋊28C2, (C2×C4).704(C2×D4), (C2×C4○D4)⋊8C22, C2.49(C2×C8⋊C22), (C2×C4⋊C4).636C22, SmallGroup(128,1920)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.121D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=f2=1, e4=d, ab=ba, ac=ca, ad=da, ae=ea, faf=acd, ebe-1=fbf=bc=cb, bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=de3 >
Subgroups: 556 in 236 conjugacy classes, 88 normal (42 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C24, C22⋊C8, C22⋊C8, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C22×C8, C2×D8, C2×SD16, C23×C4, C22×D4, C22×D4, C2×C4○D4, C2×C22⋊C8, C22⋊D8, D4⋊D4, C22⋊SD16, C8⋊8D4, C8⋊7D4, C23.46D4, C23.19D4, C23.48D4, C2×C4⋊D4, C22.19C24, C24.121D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C4○D8, C8⋊C22, C22×D4, 2+ 1+4, C23⋊3D4, C2×C4○D8, C2×C8⋊C22, C24.121D4
(1 24)(2 17)(3 18)(4 19)(5 20)(6 21)(7 22)(8 23)(9 32)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)
(2 30)(4 32)(6 26)(8 28)(9 19)(11 21)(13 23)(15 17)
(1 29)(2 30)(3 31)(4 32)(5 25)(6 26)(7 27)(8 28)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 17)(16 18)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 2)(3 8)(4 7)(5 6)(9 18)(10 17)(11 24)(12 23)(13 22)(14 21)(15 20)(16 19)(25 26)(27 32)(28 31)(29 30)
G:=sub<Sym(32)| (1,24)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31), (2,30)(4,32)(6,26)(8,28)(9,19)(11,21)(13,23)(15,17), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,2)(3,8)(4,7)(5,6)(9,18)(10,17)(11,24)(12,23)(13,22)(14,21)(15,20)(16,19)(25,26)(27,32)(28,31)(29,30)>;
G:=Group( (1,24)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31), (2,30)(4,32)(6,26)(8,28)(9,19)(11,21)(13,23)(15,17), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,2)(3,8)(4,7)(5,6)(9,18)(10,17)(11,24)(12,23)(13,22)(14,21)(15,20)(16,19)(25,26)(27,32)(28,31)(29,30) );
G=PermutationGroup([[(1,24),(2,17),(3,18),(4,19),(5,20),(6,21),(7,22),(8,23),(9,32),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31)], [(2,30),(4,32),(6,26),(8,28),(9,19),(11,21),(13,23),(15,17)], [(1,29),(2,30),(3,31),(4,32),(5,25),(6,26),(7,27),(8,28),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,17),(16,18)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,2),(3,8),(4,7),(5,6),(9,18),(10,17),(11,24),(12,23),(13,22),(14,21),(15,20),(16,19),(25,26),(27,32),(28,31),(29,30)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4F | 4G | 4H | ··· | 4L | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 8 | 2 | ··· | 2 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D8 | 2+ 1+4 | C8⋊C22 |
kernel | C24.121D4 | C2×C22⋊C8 | C22⋊D8 | D4⋊D4 | C22⋊SD16 | C8⋊8D4 | C8⋊7D4 | C23.46D4 | C23.19D4 | C23.48D4 | C2×C4⋊D4 | C22.19C24 | C22×C4 | C24 | C22 | C4 | C22 |
# reps | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 8 | 2 | 2 |
Matrix representation of C24.121D4 ►in GL6(𝔽17)
4 | 9 | 0 | 0 | 0 | 0 |
4 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 2 | 2 | 1 | 2 |
0 | 0 | 15 | 15 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 15 | 15 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 6 | 0 | 0 | 0 | 0 |
14 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 16 | 16 |
11 | 6 | 0 | 0 | 0 | 0 |
14 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 16 | 16 | 16 | 16 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(17))| [4,4,0,0,0,0,9,13,0,0,0,0,0,0,1,0,2,15,0,0,2,16,2,15,0,0,0,0,1,0,0,0,0,0,2,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,15,0,0,0,1,0,15,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,14,0,0,0,0,6,6,0,0,0,0,0,0,0,1,1,16,0,0,0,1,0,0,0,0,1,0,0,16,0,0,0,1,0,16],[11,14,0,0,0,0,6,6,0,0,0,0,0,0,0,16,1,0,0,0,0,16,0,0,0,0,1,16,0,0,0,0,0,16,0,1] >;
C24.121D4 in GAP, Magma, Sage, TeX
C_2^4._{121}D_4
% in TeX
G:=Group("C2^4.121D4");
// GroupNames label
G:=SmallGroup(128,1920);
// by ID
G=gap.SmallGroup(128,1920);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,456,758,219,675,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=f^2=1,e^4=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f=a*c*d,e*b*e^-1=f*b*f=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=d*e^3>;
// generators/relations